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SUMMARY 

A p-version least squares finite element formulation for non-linear problems is applied to  the problem of 
steady, two-dimensional, incompressible fluid flow. The Navier-Stokes equations are cast as a set of 
first-order equations involving viscous stresses as auxiliary variables. Both the primary and auxiliary 
variables are interpolated using equal-order Co continuity, p-version hierarchical approximation functions. 
The least squares functional (or error functional) is constructed using the system of coupled first-order 
non-linear partial differential equations without linearization, approximations or assumptions. The mini- 
mization of this least squares error functional results in finding a solution vector (6) for which the partial 
derivative of the error functional (integrated sum of squares of the errors resulting from individual equations 
for the entire discretization) with respect to the nodal degrees of freedom {a} becomes zero. This is 
accomplished by using Newton’s method with a line search. Numerical examples are presented to 
demonstrate the convergence characteristics and accuracy of the method. 

K E Y  WORDS Least squares Finite element p-version Error functional Degrees of freedom p-convergence 
Newton’s method Line search Navier-Stokes Hierarchical Driven cavity Asymmetric expansion 

INTRODUCTION 

The finite element method has enjoyed great success in solid mechanics and heat conduction 
applications but has not yet achieved the same level of success in the field of fluid dynamics. 
Successful application of the method to fluid dynamics problems requires the selection of an 
appropriate formulation method. Most finite element formulations are based on either varia- 
tional or weighted residual methods. Variational methods are generally viewed as producing 
the ‘best’ approximation to the exact solution of a variational problem. Unfortunately, varia- 
tional principles cannot be constructed for the Navier-Stokes equations. A possible alternative 
is to use a weighted residual approach. Galerkin-based methods (Galerkin and Petrov-Galerkin), 
collocation and the least squares method are all special cases of general weighted residual 
met hods. 

Galerkin formulations of the steady state, incompressible Navier-Stokes equations in primitive 
variable (p, u, v )  form lead to several well-known difficulties. 

(i) The coefficient matrices are not only non-symmetric but are also ill-conditioned owing 
to the absence of the pressure variable in the continuity equation. 
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(ii) The order of approximation for velocities and pressure must satisfy the Ladyzhenskaya- 
Babuska-Brezzi (LBB) ‘inf sup’ condition. This condition precludes the use of (convenient) 
equal-order interpolation for all field variables. 

(iii) A converged solution of the non-linear system of equations is difficult to achieve and in 
some cases solution procedures fail to converge. 

(iv) The converged solutions many times exhibit non-physical oscillations similar to those 
obtained using (central) finite difference schemes. 

Several methods of circumventing these problems have been investigated and reported in the 
literature.’-’ In general these ‘cures’ are problem-dependent and require an arbitrary choice of 
parameters. We believe that these approaches treat only the symptoms and fail to properly 
diagnose the basic problem. The p-version least squares method offers a more general formula- 
tion procedure compared with Galerkin-based methods. 

The least squares finite element method (LSFEM) has been advocated as a unified method 
for fluid dynamics and convective heat transfer problems.6 Becker’ observed some time ago that 
the least squares method satisfies the criteria desirable in a variational method. Becker’s criteria 
include the following. 

(i) The procedure should minimize errors in some sense. 
(ii) The integrand of the functional should be definite (admit values of only one sign). 

(iii) The procedure should be capable of treating initial value problems. 

The least squares finite element method has been applied to elliptic,’ hyperbolic’ and mixed” 
partial differential equations. Applications include boundary layer flow,’ I gas dynamics,” Stokes 
flow,’ ’ inviscid compressible flow,I4 convection-diff~sion’~ and phase change problems.16 

The p-version of the finite element method is known to possess superior convergence 
characteristics compared with the h-version.” Nevertheless, most of the current finite element 
research in computational fluid dynamics (CFD) has involved the use of low-order element 
approximations. The thrust of the current work is to combine the benefits of p-version 
approximations with the least squares formulation based on the minimization of the exact least 
squares error functional derived using actual non-linear partial differential equations without 
linearization. Jiang and Sonnad l 8  have applied a p-version least squares finite element formula- 
tion (LSFEF) to incompressible fluid flow. The p-approximation functions were based on 
Legendre polynomials and the least squares formulation was applied to the Navier-Stokes 
equations in velocity-pressure-vorticity form. A comprehensive discussion of the non-linear least 
squares processes can be found in Reference 19. The present formulation uses p-approximation 
functions based on Lagrange interpolating polynomials and includes viscous stresses as variables 
rather than vorticity. 

The formulation presented here is a direct extension of our least squares formulation for 
Burgers’ equation,” which included several unique features. The non-linear minimization 
problem was solved by incorporating a line search with the classical Newton method. The 
procedure does not require the use of preconditioners” and was shown to perform reliably in 
several numerical examples. Proper treatment of the non-linear terms (convective terms in this 
case) in the least squares minimization (discussed later in more detail) is essential in order to 
derive an error functional that corresponds to the statement of the problem and is an inherent 
feature of the present formation that separates it from all others published previously. In the 
present study the LSFEF for non-linear differential equations is applied to the solution of steady 
state, laminar, two-dimensional, incompressible, Newtonian flow problems. 

In the next section the general least squares formulation for a set of coupled non-linear 



TWO-DIMENSIONAL, INCOMPRESSIBLE FLUID FLOW 45 

differential equations is presented. In the subsequent section the steady, two-dimensional 
Navier-Stokes equations are cast as a set of first-order equations involving viscous stresses as 
auxiliary variables. The p-version LSFEF is then applied to the set of first-order equations. 
Numerical examples are presented to illustrate the convergence characteristics and accuracy of 
the present formulation. Conclusions are contained in the last section of the paper. 

LEAST SQUARES FINITE ELEMENT FORMULATION 

The following is a summary of the p-version least squares finite element formulation for problems 
described by non-linear differential equations. For a system of N differential equations the error 
functional I' for an element e is defined as 

where E l ,  i = 1, 2, , . , , N ,  are the errors which result when the finite element approximation to 
the true solution is substituted into the differential equations. For a finite element mesh consisting 
of N E  elements the total error functional I for the entire mesh is obtained by summing the 
element error functionals 1': 

NE 

I = 1 1'. 
e =  I 

From (2) we note that I is a function of the nodal degrees of freedom (6) and thus minimization 
of I would require that we differentiate I with respect to (6) and set it to  zero: 

where 

We note that {g} is indeed the variation of I and thus minimization of I would require 
N E  

61 = c 6 I ' =  { g )  = {O}, 
e =  1 

where 

with 

Equations (3) or ( 5 )  represent the true least squares minimization statement. 
For a (6) to minimize I ,  {g} must become a null vector. The least squares minimization 

statement ends here. In other words, in the least squares process we minimize I given by (2), 
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which results in finding a (6) that makes {g} a null vector. In the least squares statement 
presented above there are no assumptions or approximations and the non-linear terms will be 
treated properly (see later development); for example, terms such as u(au/dx) are differ- 
entiated with respect to (6) using the product rule while formulating {g} in (3) as opposed to 
linearizing it by lagging u. It is important to note that finding a vector (6) which satisfies 
{g} = {0} is a separate issue and has nothing to do with the least squares minimization principle. 
It may also be noted that the least squares minimization principle stated above is exact and is 
applicable to any non-linear system of partial differential equations regardless of the nature of the 
non-linearities and it does not require linearization of the non-linear terms. In the remainder of 
the paper when we refer to linearization of the non-linear differential equations we mean 
linearization by lagging coefficients. 

SOLUTION PROCEDURE 

We consider problems described by non-linear differential partial equations. For such problems 
(g} is a non-linear function of (6) and our objective is to find a (6) which would make {g} a 
null vector. At this point several different strategies can be adopted. In the first approach 
{g} = ( 0 )  may be recast in the following forms: 

CK({6})1{4 = {fL 

C K N 4  = {f({O}> (8b) 

CK({4)1{4 = f({W (84 

In (8a) the coefficient matrix [ K ]  is non-symmetric and in general its coefficients are non-linear 
functions of (6). In (8b) the coefficient matrix [ K ]  is symmetric and is independent of (6 ) .  In 
this form all {d}-dependent terms are contained in the vector {f}. In the third form given by 
(8c) the coefficient matrix [ K ]  may or may not be symmetric (depending upon which terms have 
been transferred to the right-hand-side vector {f}, but both [ K ]  and {f} are functions of (6). 
The solution vector (6) may be calculated by operating on (8) iteratively. In the second scheme 
we operate on (9 )  directly. The element-by-element conjugate gradient (including preconditioned 
conjugate gradient) method and methods based on the Taylor series expansion of (g} (Newton’s 
method) fall into this second category. Here we utilize and present the details of a solution 
method based on the second approach. 

Since the actual solution (6) which makes {g} a null vector is not known, we assume a starting 
solution (6,) for which in general we have 

Let {Ad} be the correction to {So} such that 

{g({43> + {AS})} = (0) .  (10) 

We expand (10) in a Taylor series about (So} and retain only the linear terms in {AS}: 
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From (1 1) we can write 

Substituting from (3) into (12), we obtain 

Let 

The coefficient matrix [He] is called the element Hessian matrix. 
can rewrite (12) or (13) as 

CHI,,,{A(51 = - {s({So>)>t 

where 

47 

(14) 

Using the notation in (14), we 

(15) 

e =  1 

Using (4), we can write the following expression for the element Hessian matrix [ H e ] :  

From (17) we note that the Hessian matrix [He] is symmetric. 
The improved value of the solution is given by 

At this point we note that if the incremental change {Ad} is too large, updating the solution 
vector {So} according to (18) may result in an increase rather than a decrease in the error 
functional I. Thus we update the solution vector (6,) using 

{d} = (6,) + a{A6}. (19) 

The scalar a is selected to minimize the error functional I .  In our numerical computations we 
consider the range of a as 0 < a < 2. In this range CI is incremented in steps 0.1 and for each CI 

the error functional I is calculated. The lowest value of I and a value on either side of the lowest 
value are used to construct a parabolic fit from which a value of a is calculated which minimizes 
I .  This value of a is used in (19) to obtain the updated vector (6) for the next iteration. This 
procedure described above is termed 'Newton's method with a line search'. When a = 1, it 
reduces to the classical Newton method. In the present work we use a starting vector (6,) = {0} 
and a = 1 for the first iteration; the line search is used for subsequent iterations. In all numerical 
studies conducted (including the ones presented in this paper) the actual range of a was 
0 < a d 1.5. When the updated solution is in the very close neighbourhood of the true solution, 
a becomes very close to unity and eventually reaches unity at convergence. For a given mesh 
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and p-levels, iterations are performed until the error functional I and each component of {g} are 
below a prespecified tolerance. More details on the number of iterations and the actual tolerances 
used are presented with the numerical examples. 

Remarks 

1. First of all some discussion regarding the element Hessian matrix is in order. Numerical 
studies have shown that the second term in the integrand of (17), which involves the second 
derivative of El with respect to {P}, can be neglected without affecting the convergence of the 
iterative solution procedure. In fact, in many numerical studies the convergence of the iterative 
procedure is improved by doing so. In problems where convective terms are the only source of 
non-linearities (Burgers' equation, incompressible Newtonian fluid flow, etc.), obtaining explicit 
expressions for the second derivative of E4 with respect to (6') is not too complicated. 
However, in applications such as non-Newtonian fluid flow where the generalized viscosity may 
be represented by a power behaviour, obtaining expressions for this term is algebraically very 
tedious and in some cases may even become a formidable task. The additional computational 
time needed in computing [ H e ]  due to inclusion of this term depends upon the degree of 
non-linearity. For two-dimensional incompressible Newtonian flow the increase in computa- 
tional time is only a small fraction, but for non-Newtonian fluid flow applications the inclusion 
of this term may significantly increase the computational time for [ H e ] .  Thus in summary, 
including the second term in the computation of [ H e ]  increases the complexity of programming, 
increases the computational effort and does not improve the convergence of the iterative process. 
Even though at this point we are unable to offer a mathematical justification for not including 
the second term in the computation of [ H e ] ,  however, the benefits described here amply justify 
computation of [ H e ]  without the second term. 

2. It should be noted that this approximation (described in item 1) in the computation of the 
Hessian matrix only alters the search direction in the iterative procedure and in no way effects 
the least squares error functional and the minimization procedure described in the earlier section. 

3. We note that {g} = ( 0 )  is only a necessary condition for the minimization of I .  The sufficient 
condition to ensure that we have the minimum of I is that [ H I  (given by (16)) must be positive 
definite for a (6) which satisfies {g} = {0} ,  i.e. we must show that (6*}T[H({6))]{6*} > 0 for 
an arbitrary vector {6*}. Numerically this is rather easy to compute and demonstrate (even 
though we have not done so in this paper). Rather than proving or numerically showing that 
[ H ( { S } ) ]  is positive definite, we present a different reasoning and state another condition which 
ensures that a (6) which satisfies {g} = {0} indeed minimizes I .  

First we examine the mathematical aspects of the problem and then later state how these 
should be viewed in the numerical-computational sense. We note that I represents the 
summation over all elements of the mesh of the sum of squares of the errors resulting from the 
individual differential equations integrated over each element. Thus if {6} represents the solution 
vector for which {g} = 0, then I = 0 guarantees that we have indeed found a (6) for which I is 
the global minimum, because I = 0 is the global minimum we are seeking. Thus ( 9 )  = 0 and 
I = 0 are the necessary and sufficient conditions for the global minimum of I .  

Numerically these conditions {g} = 0 and I = 0 can only be satisfied in the sense of some 
threshold tolerance A. A numerically computed 'zero' depends on the word size of the computer 
used. On most computers, if the computed numbers are in the range 10-6-10-'2, they can be 
treated as zero. Thus we could set A = 10-6-10-'2 and then our necessary and sufficient 
conditions for the global minimum of I (in the numerical-computational sense) would become 
{g} < A and I < A. However, in our computations we have found that the computed pressure, 
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velocities, stresses, temperature and heat fluxes are quite accurate (up to five or six significant 
places) for A as high as 10-3-10-4. Thus there is no need to set A as low as 10-6-10-'2, a 
value of 10-3-10-4 suffices for all practical purposes. In the numerical examples presented in 
this paper the solution is considered converged to the correct solution when the magnitude of 
each component of {g} is less than or equal to A and when I < A, where A is set to 10-3-10-4. 
We have also found that when the condition I d A is satisfied, the computed numerical values 
of the components of {g} are even lower than A. {g} $ A  and I $  A indicate either lack of 
mesh refinement or  inadequate p-levels or in some cases both. It is quite obvious (but nevertheless 
worth mentioning) that lower values of A will require more refined meshes and higher p-levels 
but would result in more significant place accuracy in the computed solution. In the numerical 
examples presented in this paper the mesh and p-level combinations are for A < 10-3-10-4. 

4. The p-version LSFEF, when applied to the system of non-linear differential equations, 
results in finding a {S} for which {g} must become a null vector. However, since {g} may be a 
complex non-linear function of {d}, we apply Newton's method with a line search to find this 
{ 6 ) .  In many published papers the non-linear differential equations are linearized by lagging 
coefficients at the onset before constructing the least squares f ~ n c t i o n a l . ~ * ~ . ' ~  Such approaches 
result in an approximation to the true least squares functional. Clearly, as just demonstrated, 
such linearization is totally unwarranted as far as the least squares minimization functional is 
concerned. Another important comment regarding the linearization (based on lagging coeffi- 
cients) of differential equations is that this can only be done in simple cases (e.g. convective terms 
in momentum equations). In more complex situations such as non-Newtonian fluid flow, 
linearization approaches similar to those presented and advocated in References 6, 9 and 13 
may result in undesirable approximation. We argue firstly that the linearization of the differential 
equations is an unnecessary approximation which can be easily avoided and secondly that the 
least squares functional corresponding to the linearized differential equations based on lagging 
coefficients is not the true functional corresponding to the actual non-linear equations. Any 
numerical scheme based on this approximate functional will result in an approximation in the 
calculated solution as well. In other words, a {S} which makes the error functional I resulting 
from the linearized system less than or equal to A may result in the true error functional (based 
on actual non-linear differential equations) I > A, indicating that this {a} is not the solution 
of the actual non-linear problem. 

5 .  At this point we wish to state that the application of Newton's method to find a {d} for 
which {g} becomes a null vector corresponding to the true least squares functional presented 
here is not the same as linearizing the differential equations by lagging coefficients and then 
constructing the least squares functional and its minimization. As we stated earlier, the 
construction of the least squares functional and associated minimization and the method used 
to find a solution vector ( 6 )  that satisfies the conditions dictated by the least squares 
minimization principle are two separate issues. The point to note is that linearized differential 
equations result in a functional that does not correspond to the statement of the original problem. 
In our presentation we have demonstrated that the true least squares functional and minimiza- 
tion principle can be constructed without introducing any approximations in the differential 
equations and that Newton's method with a line search can indeed be used to find the solution 
vector {S} for which {g} < A and I < A which in fact gives us the minimum of I we are seeking. 
The approximation in the computation of the Hessian matrix only effects the search direction 
during iterations and has absolutely no effect on the exactness of the least squares functional 
and minimization principle. 

6 .  It is worth noting that the approaches based on the minimization of the quadratic 
functional' which is constructed by using the actual error functional obtained from the 
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non-linear differential equations result in the same element Hessian matrix as our formulation 
does after deleting the terms containing the second derivative of EP with respect to { h e } .  This 
procedure is also referred to as linearization based on Newton’s method. In other words, the 
Newton linearization before minimization gives the same Hessian matrix as our formulation 
when the term containing the second derivative of EP with respect to (6‘) is deleted in equation 
(17). 

APPLICATION TO THE NAVIER-STOKES EQUATIONS 

The general formulation presented in the previous section may be easily applied to the 
Navier-Stokes equations. Here we consider steady, two-dimensional, incompressible, Newtonian 
flow. The Navier-Stokes equations can be expressed as the following set of first-order differential 
equations: 

a; ae - + - = o ,  aa ag 

a; 
?,, - 2 p  - = 0 aa ’ 

The purpose of reducing the equations to a set of first-order equations is to permit the use 
of Co approximation functions. This approach is completely analogous to the approach used 
for Burgers’ equation.*’ 

Assuming constant values for p, p, gx and gv, the following dimensionless variables can be used: 

where T~ = pVo/L. Using these dimensionless variables, equations (20) can be expressed in 
the following dimensionless form: 
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au 
?,, - 2 - -  = 0, 

2X 

au 
dY 

ZYY - 2 - = 0. 

If Ph, uh, uh, T:,, r;, and T!, represent the finite element approximation to the true solution 
(f, u, u, z,~, T,.,), then the errors are given by 

a u h  doh 

ax ay E e - - + - ,  1 -  

If we consider the same order of approximation for all field variables, then we can write 

Y h  = [Nl{Y}, (24) 

where [ N ]  is the hierarchical approximation function matrix and {'P} are the hierarchical nodal 
degrees of freedom for a field variable Y ,  e.g. uh = [ N ] { u } ,  uh = [ N ] { u } ,  etc. The derivation of 
the hierarchical approximation functions and nodal variables for a nine-node two-dimensional 
element (Figure 1 )  is summarized in Reference 22. The contents of the approximation function 
matrix [ N ]  and the nodal degree of freedom vector {'Y} are presented in Table 1. 

In addition to the errors given by equations (23), the formulation presented in the previous 
section requires expressions for the derivatives of the errors with respect to the {de}-vector. In 
this case 
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X Nodes with hierarchical degrees of freedom 
0 Non-hierarchical nodes 

Figure 1. A nine-node p-version element in natural co-ordinate space ( 5 ,  u )  

and 

Table I .  Hierarchical approximation functions and nodal variables for a nine-node 
p-version element 

Node Approximation Hierarchical nodal Order of 
functions variables { Y )  derivatives 

2 

6 

4 

8 

1 = 2, 3 , .  . ., p< 

1 = 2, 3,.  . . )  pc 

j = 2, 3 , .  . ., p,, 

j = 2, 3, ..., p,, 
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Using equation (24) with Y = P ,  u, u, sxx, s,,, and T,,,,, the required expressions in (26) can be 
written directly: 

(27) 

The errors given by equations (23) and the derivatives of the errors with respect to the 
degree of freedom vector (6‘) given by equations (27)-(32) are used to compute the element 
vector ( g e }  (equation (4)) and the Hessian matrix [ H e ]  (equation (17)). The integrals are calculated 
using Gaussian quadrature. Exact integration requires the use of 2p + 1 integration points in 
the 5- and v]-directions, where p is the order of the polynomial approximation. We have found 
that the use of p + 2 integration points introduces very little error in the integration (< 1%) but 
greatly reduces the required computations. In the numerical examples which follow, the integrals 
were computed using the ‘ p  + 2 rule’. 

The system of algebraic equations in (15) is solved using the wavefront method. The CPU 
time required in this method is a function of the maximum wavefront and the RMS wavefront. 
We have used this procedure successfully to solve problems with maximum wavefronts in excess 
of 3000 degrees of freedom. However, this solution method may not be the most efficient (in 
terms of storage and C P U  time) method of solving (15) for meshes containing large numbers of 
degrees of freedom. Here we elected to use this method because it was easily available from 
other finite element subsystems in our finite element software system. The efficiency aspects of 
the formulation presented are neither claimed nor discussed in this paper. These aspects are 
currently being investigated and will be presented in a subsequent paper. 

NUMERICAL EXAMPLES 

Two numerical examples are presented in this section to demonstrate the accuracy and 
convergence characteristics of the present p-version least squares formulation. For both examples 
the results are compared with published results. 
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Figure 2. Driven cavity problem and finite element models: (a) schematic of driven cavity problem; (b) finite element 
model A of driven cavity; (c) finite element model B of driven cavity 

Example 1. Driven cavity 

Here we consider the ‘driven cavity’ problem, a schematic of which is shown in Figure 2(a). 
The boundary conditions for the dimensionless velocities u and u and the pressure P are also 
shown in Figure 2(a). Figures 2(b) and 2(c) show two different graded finite element meshes using 
36 elements. The main difference between the two meshes is in the sizes of the elements adjacent 
to the four boundaries of the cavity. In mesh A these elements are 0.1 units whereas in mesh B 
they are 0.05 units. 

For both meshes the p-levels in the 5- and q-directions (pe = p,,) were uniformly increased 
from three to nine and the results were computed for Re = 1000. Figure 3 shows plots for error 
function I versus total degrees of freedom. Both meshes yield monotonic curves and quite low 
values of I for p-levels beyond six, but mesh B yields slightly lower values of I than mesh A for 
the same number of degrees of freedom. Both meshes yield just about the same convergence 
rate (slopes of I versus degrees of freedom (DOF) curves), as is obvious from the graphs shown 
in Figure 3. On the sole basis of the graphs in Figure 3, we can conclude that mesh B is slightly 
better. Newton’s method with a line search required less than 10 iterations for a convergence 
tolerance 0(10-4) or less for both {b}  and I .  

The solution for u along the vertical centreline ( x  = 0.5) for mesh A is presented in Figure 4 
and the solution for u along the horizontal centreline ( y  = 0.5) for mesh A is shown in Figure 
5. The results reported by Ghia et al. 2 3  are used as a reference and are also presented in Figures 
4 and 5. The dimensionless pressure values along the vertical and horizontal centrelines for mesh 
A are shown in Figures 6 and 7. We note that the solutions for u and v are converged and show 
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i A Example 1: Driven Cavity 

0 mesh B 

I I 1 I I I l l 1  I I I I 1 1 1 1  

10 10 10 
Degrees of Freedom 

Figure 3. p-Convergence of error functional I for driven cavity problem 

excellent agreement with the reference solution,23 but the solution for pressure is not yet 
converged at a p-level of nine. 

As part of the solution postprocessing, we compute a quantity called the element mean square 
error (MSE). For an element e we define 

I' 
MSE = - 

A" 

where A' is the area of element e. We have found that MSE values are very useful for adaptive 
mesh refinement. For this particular problem the largest MSE values were observed in elements 
occupying the upper corners of the cavity. On the basis of these MSE values, the element sizes 
were adjusted to generate mesh B. A symmetric mesh was used even though mesh refinement 
was not actually needed in the lower corners. The graphs of u(x = 0,5, y) and ~ ( x ,  y = 0.5) for 
mesh B are shown in Figures 8 and 9 along with the reference solution. Note that the present 
solution and the reference solution agree at every point. Dimensionless pressure values along 
the vertical and horizontal centrelines for mesh B are shown in Figures 10 and 11. 
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Figure 4. Plots of u(x = 0.5, y) at Re = loo0 using mesh A 
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Figure 5. Plots of v ( x ,  y = 0.5) at Re = 1000 using mesh A 
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Figure 6 .  Plots of P ( x  = 0.5, y) at Re = 1000 using mesh A 

O.’O I Example 1: Driven Cavity 
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Figure 7. Plots of P ( x ,  y = 0.5) at Re = 1000 using mesh A 
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Figure 12. Asymmetric sudden expansion problem and finite element models: (a) schematic of asymmetric expansion 
problem; (b) finite element model A of asymmetric expansion; (c) finite element model B of asymmetric expansion 

From the velocity graphs for meshes A and B (Figures 4, 5 and 8, 9) we note that mesh A 
produces quite inaccurate values of u and v for lower p-levels whereas the mesh B results for 
even a p-level of four are quite good. It is worth noting that from the I versus DOF graphs 
(Figure 3) it might seem that there is only little improvement in the I-value for mesh B but the 
resulting improvements in the values of u and v are dramatic for lower p-levels. The error 
functional versus DOF graphs serve as important indicators of the quality of the total solution. 
From these graphs the best solution can be selected without knowledge of the exact solution. 

Example 2. Asymmetric sudden expansion 

Here we examine a 3 : 2 asymmetric sudden expansion problem and compare our numerical 
results with the experimental results of Denham and Patrick.24 We consider the cases of lowest 
and highest Reynolds number from the experiment, Re = 73 and 229 respectively, which are 
based on the mean velocity and channel half-width at the inlet. The problem geometry and 
boundary conditions are shown in Figure 12(a). The co-ordinates are expressed in step height 
units. At Re = 7 3  the inlet velocity profile was taken to be parabolic. The actual experiment 
values were very close to a parabolic profile. At Re = 229 the inlet boundary conditions were 
determined using a least squares fit to the actual inlet velocity measurements. The pressure was 
constrained at a single node and fully developed conditions (v = 0, z,, = 0) were imposed 28 
units downstream. 

Initially the seven-element mesh (mesh A) shown in Figure 12(b) was used. At Re = 7 3  it was 
observed that the MSE values were largest for the elements adjacent to the corner point at  
x = 0, y = 1. To refine the mesh, an additional row and column of elements were added next 
to the corner point. It was again observed that the largest MSE values occurred in the elements 
located next to the corner point. The size of these elements was reduced until the solution no 
longer changed. The final mesh (mesh B) is shown in Figure 12(c). Newton’s method with a line 
search took less than 10 iterations for a convergence tolerance 0(10-3) or less for both ( 6 )  and I. 
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Figure 13. p-Convergence of the error functional I for asymmetric sudden expansion problem 

The error functional versus DOF graphs obtained using uniform p-refinement (p-convergence 
of I )  are shown in Figure 13. The use of mesh B clearly results in much lower error functional 
values. The final error functional I is less than for both Re = 73 and 229. In Figure 14 
the dimensionless shear stress 7xy obtained using mesh A is plotted along the lower surface 
(y = 0) for several p-levels. Note that different solutions are obtained using mesh A and mesh 
B and thus the recirculation zone length LR prediction is somewhat different. In Figure 15 several 
T , ~  solution curves obtained using mesh B are presented. The curves are all smooth and correctly 
predict a value of tXy = 0 at x = 0. The 7xy results obtained for Re = 229 are shown in Figure 
16. For this case the recirculation zone length prediction of L, = 9.7 agrees very well with the 
experimental results. At Re = 73, however, the recirculation zone length prediction of L, = 5.3 
is different from the experimental value of LR z 4.0. Other researchers have also predicted larger 
recirculation zones for Re = 73. For example, Hackman et al.25 predict the recirculation zone 
length to be about 5-6 units. 

The converged velocity profiles at x = 0.0, 0.8, 2.0, 4.0, 6.0, 8.0 and 10.0 are presented in 
Figures 17-23. The agreement between the experimental and numerical results is good, although 
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TWO-DIMENSIONAL. INCOMPRESSIBLE FLUID FLOW 65 

3.0 

2.0 

x 

1 .o 

0.0 

Example 2 
Asymmetric 
Solution at 

Sudden Expansion 
x = 4.0 

0 Experimental, Re = 73 [24l 
0 Experimental, Re = 229 P I  

mesh A, p = 10 
mesh B, p = 10 

.....__.... 

I 

3.0 

2.0 

x 

1 .o 

0.0 

-1.0 -0.5 0.0 0.5 1.0 1.5 
u at x=4.0 

Figure 20. Velocity profiles at x = 4.0 
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there are some obvious differences (but well within acceptable tolerances), Some error ( ~ 2 % )  
may also have been introduced in the process of extracting the velocity values from the graphical 
results of Denham and P a t r i ~ k . ' ~  

CONCLUSIONS 

A true p-version least squares minimization procedure has been presented for coupled non-linear 
partial differential equations. In the development of the least squares error functional the actual 
non-linear partial differential equations are utilized without linearizing the non-linear terms or 
introducing any other approximations. This procedure has been applied to the specific case of 
two- dimensional, incompressible, Newtonian, steady state flow described by Navier-Stokes 
equations. For non-linear problems the least squares minimization principle requires finding a 
{6} which makes {g} (a vector of partial derivatives of the error functional with respect to the 
global nodal degrees of freedom) a null vector. This is accomplished by utilizing Newton's method 
with a line search. Two numerical examples are presented to demonstrate the accuracy and 
convergence characteristics of the method. The following specific conclusions can be drawn based 
on this research. 

The least squares minimization procedure presented here is applicable to any set of linear or 
non-linear differential equations and will result in the true least squares functional free of 
assumptions and approximations. Linearization of the non-linear differential equations by 
lagging coefficients before constructing the least squares functional unnecessarily destroys the 
true least squares functional that corresponds to the actual problem at hand. 

The construction of the least squares functional and finding a solution vector (6) that 
satisfies the necessary and sufficient conditions for minimization are two theoretically unrelated 
issues. Assumptions or approximations employed in devising a solution procedure to find 
such a (6) have absolutely no effect on the exactness of the least squares functional to be 
minimized. 

The condition (g(f6))) = (0) for a solution vector (6) only represents the necessary conditions 
for the minimum of I .  The sufficient conditions is given by {6*}T[H({6})] {6*} > 0 for an 
arbitrary vector {6*}. Since I = 0 is the minimum we are seeking, a solution vector { 6 }  which 
satisfies I = 0 will automatically satisfy the sufficiency condition of the positive definiteness of 
the Hessian matrix [HI. Thus the sufficient condition given by {6*}T[H({6})] {6*} > 0 can be 
replaced with I = 0. In the numerical-computational sense {g} d A and I < A (where A may 
be chosen to be O(lOP3) or 0(10-4)) are the necessary and sufficient conditions for the 
numerically global minimum of I .  

Making an approximation in the computation of the Hessian matrix [ H e ]  (neglecting the 
term containing the second derivative of EP with respect to (6')) only alters the search 
directions during the Newton iteration procedure and has absolutely no effect on the exactness 
of the least squares minimization functional. This approximation has the beneficial effects of 
simplifying the programming, speeding up the computations and accelerating the convergence 
of the Newton method with a line search. 

The least squares formulation automatically provides a measure of the solution error through 
the error functional. The element error functional values are very useful in adaptive mesh 
refinement or adaptive p-level changes. The total error functional is a monotonic function of 
the total degrees of freedom as the p-levels are increased for a fixed mesh. 

The computational results agree very well with both experimental measurements and other 
numerical solutions considered to be quite accurate. 
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In summary, the p-version least squares formulation presented here produces excellent results, 
has good convergence characteristics and provides an accurate tool for numerical simulation of 
two-dimensional, incompressible, Newtonian flow. 
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